To calculate the **impedance of a capacitor**, the formula to do so is:

\[Z_C=\dfrac{1}{2\pi fC}\]

where \(Z_C\) is the impedance in unit ohms, \(f\) is the frequency of the signal passing through the capacitor, and \(C\) is the capacitance of the capacitor. To calculate the **impedance of an inductor**, the formula to do so is:

\[Z_L=2\pi fL\]

where \(Z_L\) is the impedance in unit ohms, \(f\) is the frequency of the signal passing through the inductor, and \(L\) is the inductance of the inductor. If there are both capacitors and inductors present in a circuit, the total amount of impedance can be calculated by adding all of the individual impedances:

\[Z_{tot}=Z_C+Z_L\]